q-Discrete Toda Molecule Equation
نویسندگان
چکیده
A q-discrete version of the two-dimensional Toda molecule equation is proposed through the direct method. Its solution, Bäcklund transformation and Lax pair are discussed. The reduction to the q-discrete cylindrical Toda molecule equation is also discussed. 1 On leave from Department of Applied Mathematics, Faculty of Engineering, Hiroshima University. 1
منابع مشابه
The Toda molecule equation and the epsilon-algorithm
One of the well-known convergence acceleration methods, the ε-algorithm is investigated from the viewpoint of the Toda molecule equation. It is shown that the error caused by the algorithm is evaluated by means of solutions for the equation. The acceleration algorithm based on the discrete Toda molecule equation is also presented. Discrete integrable systems play important roles in the field of...
متن کاملThe Toda Molecule Equation and the Ε-algorithm
One of the well-known convergence acceleration methods, the ε-algorithm is investigated from the viewpoint of the Toda molecule equation. It is shown that the error caused by the algorithm is evaluated by means of solutions for the equation. The acceleration algorithm based on the discrete Toda molecule equation is also presented. Discrete integrable systems play important roles in the field of...
متن کاملMöbius Symmetry of Discrete Time Soliton Equations
We have proposed, in our previous papers[1, 2], a method to characterize integrable discrete soliton equations. In this paper we generalize the method further and obtain a q-difference Toda equation, from which we can derive various q-difference soliton equations by reductions.
متن کاملThe Baxter Equation for Quantum Discrete Boussinesq Equation
Studied is the Baxter equation for the quantum discrete Boussinesq equation. We explicitly construct the Baxter Q operator from a generating function of the local integrals of motion of the affine Toda lattice field theory, and show that it solves the third order operator-valued difference equation. nlin/0102021
متن کاملCasorati Determinant Solutions for the Discrete Painlevé-II Equation
We present a class of solutions to the discrete Painlevé-II equation for particular values of its parameters. It is shown that these solutions can be expressed in terms of Casorati determinants whose entries are discrete Airy functions. The analogy between the τ function for the discrete PII and the that of the discrete Toda molecule equation is pointed out.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993